Vol. 75, No. 2, pp. 135-150.
©2009 Council for Exceptional Children.

Exceptional Children

The Improvement Rate

Difterence for Single-Case

Research

RICHARD I. PARKER

KIMBERLY J. VANNEST
Texas ASM University at College Station

LEANNE BROWN
Cox Elementary School

aBsTRAcT: 1his article describes and field-tests the improvement rate difference (IRD), a new effect

size for summarizing single-case research data. Termed “risk difference” in medical research, IRD

expresses the difference in successful performance between baseline and intervention phases. IRD

can be calculated from visual analysis of nonoverlapping data, and is easily explained to most edu-

cators. IRD entails few data assumptions and has confidence intervals. The article applies IRD to
166 published data series, correlates results with three other effect sizes: R2, Kruskal-Wallis W, and
percent of nonoverlapping data (PND), and reports interrater reliability of the IRD hand scoring.

The major finding is that IRD is a promising effect size for single-case research.

ntegral to applied behavior analysis

(ABA) is the frequent measurement of

client behavior over time, and its

graphic display to guide decisions for

managing interventions (Baer, Wolf &
Risley, 1968; Sidman, 1960; Skinner, 1938). In-
ferences about the cause and amount of behav-
ioral change are made from visual analysis of
graphed data, to detect differences of “sufficient
magnitude to be apparent to the eye” (Parsonson
& Baer, 1978). However, when data have high
variability or “bounce,” client improvement has
proved difficult to judge, requiring visual heuris-
tics such as trend lines (Cooper, Heron, &
Heward, 1987). Another adjunct to visual analy-
sis is to draw “envelopes” around trend lines to
indicate their stability (Lovitt, 1977; White &
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Haring, 1980). Thus, the best visual analyses
commonly are supported by simple statistics-
based heuristics.

Parsonson and Baer (1978) eschewed statisti-
cal analyses of ABA data, stating that an advan-
tage of visual analysis alone is its conservatism;
only visually prominent effects are accepted.
However, published single-case research studies
do not always portray unequivocally large results.
Glass (1997) reviewed several volumes of the
Journal of Applied Behavior Analysis and found
frequent “small, weak and ephemeral effects, or
effects that are entirely illusory” (p. 598). A re-
cent examination and re-analysis of over 150
published single-case research data series found
less than half with large effects (according to both
visual and statistical analyses), and more than one
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quarter showed small or debatable results (Parker,
Cryer, & Byrns, 2006). Yet in the face of these
modest results, only visual analysis has been em-
ployed in 90% of published single-case research
studies, this rate unchanged over 3 decades (Busk
& Marascuilo, 1992; Kratochwill & Brody, 1978;
Parker & Brossart, 2003).

The prevalence of published small and mod-
erate-size single-case research results, and the need
to unambiguously describe these results, has led
some to use statistics, to a limited extent. For
decades, researchers have drawn trend lines and
computed slopes to describe “rate of improve-
ment.” Percentile-based “envelopes” around the
trend lines describe slope variability (Lindsley,
1971; Lovitt, 1977; White, 1986; White & Har-
ing, 1980); percent of nonoverlapping data
(PND; Scruggs, Mastropieri, & Casto, 1987) sug-
gests size of experimental effect. Although the
“logic of decision making that underlies single-
case investigations is compatible with statistical
reasoning” (White, Rusch, Kazdin, & Hartmann,
1989, p. 283), statistics for single-case research
are still in an early stage of development.

The statistical summary with fastest rising
popularity across research models is the magnitude
of effect or effect size index (Kirk, 1996; Thomp-
son, 2002a; Wilkinson & The Task Force on Sta-
tistical Inference, TFSI, 1999). American
Psychological Association (APA) publication stan-
dards (2001) now require effect sizes for almost all
quantitative research. Though not yet well ac-
cepted in single-case research, effect size has been
described as the “obvious choice” for summarizing
single-case study effects (Busk & Setlin, 1992, p.
192). However, an effect size cannot duplicate the
breadth and integrated nature of holistic visual
analysis (e.g., simultaneous consideration of mean
or median level shifts, trends and trend differ-
ences, precipitous behavior changes at interven-
tion onset, data variability within and across
phases, differences in trend line intercepts at inter-
vention points, curvilinear progress, lag or delay in
response to intervention, etc.). The effect size does
not compete with this breadth, but rather serves a
narrower purpose, that of quantifying the amount
of behavioral change between contrasted phases.

An effect size alone cannot communicate
whether the intervention caused the improve-
ment. “Statistics do not demonstrate causality.
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You need a rigorous design for that ” (Bloom, Fis-
cher, & Orme, 1999, p. 572). Nor can an effect
size alone tell what type of improvement was
measured: whether in trend, in mean or median
level, or both. Nor can one effect size necessarily
summarize a full single-case research design; some
complex designs may require multiple phase con-
trasts for adequate summary. Despite these limita-
tions, we contend that an effect size is a useful
supplement to visual analysis, especially when in-
formation about the phase contrast and design
context are also well described.

Effect sizes are simply a standardized expres-
sion of the amount of behavior change between
phases. They do not address practical significance
or clinical significance, values which can be over-
laid on effect sizes, as a second step. Practical sig-
nificance is achieved when behavior change has a
practical impact on the client’s daily life (Shaver,
1991; Thompson, 2002b), and the more de-
manding clinical significance is change from a
dysfunctional to functional range of activity (Ja-
cobson, Follette, & Revenstorf, 1984). However,
effect sizes are a beginning point for overlaying
social value judgments by teachers, school psy-
chologists, and clinicians.

An effect size is a useful supplement
to visual analysis, especially when
information about the phase contrast
and design context are also well described.

Effect size calculation can serve the primary
goal of establishing a functional relationship be-
tween intervention and behavior. To establish this
relationship, Horner et al. (2005) recommend ex-
amining a minimum of three phase shifts, as in an
ABAB design or a three-series multiple baseline
design. Visual analysis skills illuminate behavior
change at each of these phase shifts, attending to
data variability and, especially, to data trend. After
examining the intercept gap for each phase shift,
the researcher is able to answer the question of a
functional relationship. The follow-up questions
of (a) degree of change, and (b) reliability of the
change can be answered by calculating an effect
size for each of the three (or more) phase shifts, in
turn. If a functional relationship was evidenced,
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then an overall (omnibus) effect size can be con-
ducted on the entire design. The omnibus analy-
sis includes all component phase shifts to produce
a single effect size with greater reliability (smaller
confidence interval) than those of the component
effect sizes.

Combining effect sizes with visual analysis
offers at least four advantages to single-case re-
search: objectivity, precision, certainty, and gen-
eral acceptability. The objectivity of an effect size
is useful when subjective visual judgments dis-
agree. Adequate agreement by visual judges con-
tinues to be a challenge in the single-case research
field, even among experienced researchers
(Brossart, Parker, Olson, & Mahadevan, 2005;
Harbst, Ottenbacher, & Harris, 1991; Otten-
bacher, 1990; Park, Marascuilo, & Gaylord-Ross,
1990). Objectivity also is an asset when commu-
nicating results unambiguously to a new audience
of stakeholders (Huitema, 1986).

Precision is a second advantage of including
an effect size with visual analysis. The visual anal-
ysis reliability studies (Harbst et al., 1991; Otten-
bacher, 1990; Park et al., 1990) consistently
indicate that only gross judgments can be made
accurately and consistently. If only large effects
were of interest and published, as per the recom-
mendation of Parsonson and Baer (1992), then
visual analysis may be adequate. However, this
does not describe current practice, as many pub-
lished single-case research studies show only mod-
erate- and small-size results (Glass, 1997). In a
recent survey of over 150 published single-case re-
search datasets, 25% showed small, debatable, or
negligible results, according to both visual and
statistical analysis (Parker et al., 2006).

Certainty is a third advantage of including
effect sizes with visual analysis. Certainty is the
level of confidence one may have that results are
not due to chance alone. In a short dataset, a large
effect may be nullified or reversed by only a few
additional data points. Though the measured ef-
fect size may be large, we can have little confi-
dence in it. Level of confidence is indicated by a
confidence interval bracketing the effect size.
Confidence intervals are available for all standard
effect sizes (Cohen’s 4, Hedgess g, R, R?, phi, W,
odds ratio, risk difference) because they all have
known sampling distributions. However, for
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PND (Scruggs et al., 1987) the sampling distribu-
tion is unknown.

The fourth advantage of visual plus statistical
analysis is acceptability by the broader research
field. ABA was developed, practiced, and pub-
lished in relative isolation from other social sci-
ence research. However, broad changes in
education and psychology research related to evi-
dence-based practices, interventions, or treat-
ments are bringing single-case research under the
scrutiny of a broader professional community. For
identifying successful evidence-based treatments
through meta-analysis, effect sizes are a necessity
(Forness, 2001; Mostert, 2001), and single-case
research’s lack of standard effect sizes is excluding
these studies from meta-analyses (Allison & Gor-
man, 1993; Giles, 1990; Strube, Gardner, &
Hartmann, 1985).

Guidelines for single-case research are being
strengthened by such fields as school psychology
(Kratochwill & Stoiber, 2002); special education
(Horner et al., 2005); and clinical psychology
(Chambless & Ollendick, 2001). These changes
should help gain greater acceptability for single-
case research by the broader research community.
Finally, single-case research is being scrutinized at
the federal level, where more stringent design and
analysis standards have been set by the new Insti-
tute of Education Sciences (IES, 2005).

Of the dozens of established effect sizes
(Cohen, 1988; Kirk, 1996), most pose problems
for applied researchers, including: (a) having
opaque or esoteric meanings, (b) assuming data
properties lacking in most single-case research
datasets, (c) being technically difficult to produce,
(d) being difficult to meld with visual analysis,
and (e) encouraging oversimplified misinterpreta-
tions. A prime example of esoteric meaning is k2
as percent of variance accounted for, which pre-
sumes understanding of ordinary least-squares
variance partitioning. Similarly, the interpretation
of Cohen’s 4 as standardized mean difference pre-
sumes understanding of normal distributions,
standard deviation units, and Z scores. Regression
R?2 and ANOVA or ¢ test (or hand-calculated)
Cohen’s 4 are statistically equivalent (Rosenthal,
1991; Wolf, 1986). Many educators lack the
background for understanding either of these
common effect sizes (May, 2004; Rosenthal, Ros-
now, & Rubin, 2000; Weiss & Bucuvalas, 1980).
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The second limitation of effect sizes such as
R, R?, Cohen’s 4 and Hedges’s ¢ is that they as-
sume that data are serially independent, normally
distributed, and have constant variance. Standard-
ized mean difference effect sizes (Cohen’s 4,
Hedges’s ¢) are statistically equivalent to regres-
sion effect sizes (R, R?), and have the same data
assumptions. Most single-case research data fail to
meet at least one of these assumptions (Matyas &
Greenwood, 1996; Parker & Brossart, 2003). A
recent examination of 166 published multiple
baseline designs found over two thirds failing to
meet either normality or equal variance assump-
tions, and another two thirds were undesirably
autocorrelated (Parker, 2006).

The third limitation is the difficulty of carry-
ing out the statistical analyses. Despite the ease of
menu-driven statistics, interpretating output may
require statistical knowledge beyond introductory
coursework. For parametric analyses, the user
must be able to interpret tests for normality and
homogeneity of variance. This is especially diffi-
cult with short data series, for which the best tests
of assumptions are invalid and more subtle visual
analysis of residual scores is necessary (Hintze,
2007). In calculating Cohen’s 4, formulas must be
adjusted due to non-constant variance and unbal-
anced phase lengths (Busk & Serlin, 1992).

A fourth limitation is that most effect sizes
do not blend well with visual analysis (Parsonson
& Baer, 1992). Over the history of ABA, visual
analysis has developed its own heuristics, which
do not include effect sizes. Visual analysis typi-
cally focuses on nonoverlapping data, spatial sepa-
ration of score clusters, estimated proportion of
scores above or below performance standards, es-
timated data trends and changes in those trends,
and discontinuity in trend lines at intervention
onset—as well as noting precipitous changes in
individual data points around intervention onset
times. These heuristics entail no more than ordi-
nal-level data assumptions, not the more stringent
assumptions of R2 and Cohen’s 4.

Finally, effect sizes presented alone, without
context, are likely to be misinterpreted (Thomp-
son, 2006). An effect size needs to be accompa-
nied by contextual details of the design, the
intervention, the particular phase contrast em-
ployed, and the type of statistical analysis
(Durlak, 2002; Kirk, 1996; Rosnow & Rosenthal,
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1989; Wilkinson & TEFSI, 1999). Especially in
multiseries and complex multiphase designs, the
consumer needs to know which phases were con-
trasted and excluded from effect size calculations.
The consumer also needs to know what statistical
model was used, because effect size magnitudes
vary by model (Parker & Brossart, 2003). In
short, an effect size must be presented with guide-
lines for its interpretation.

The purpose of this article is to introduce the
improvement rate difference (IRD) for single-case
research data, an effect size with advantages over
standardized mean difference (Cohen’s 4, Hedges
2 and variance accounted for (R, R?) alternatives.
IRD’s advantages include (a) accessible interpreta-
tion as the difference in improvement rates be-
tween baseline and treatment phases; (b) simple
hand-calculation; (c) compatibility with PND
from visual analysis; (d) known sampling distri-
bution, so confidence intervals are available; (e)
proven track record (as risk difference) in hundreds
of evidence-based medical research studies; (f)
few data distribution assumptions; and (g) appli-
cation to complex single-case research designs and
multiple data series.

IRD is defined as the improvement rate (IR)
of the treatment phase(s) minus the improvement
rate of the baseline phase(s): IR, — IRy = IRD
(Cochrane Collaboration, 2006; Sackett, Richard-
son, Rosenberg, & Haynes, 1997). Its calculation
is described in the Method section. IRD has a
solid record of use in evidence-based medicine,
under the name of risk reduction or risk difference;
renaming it in this article reflects the focus in sin-
gle-case research on client improvement rather
than reduction of risk for disease or death. Risk
difference is valued by medical researchers for its
interpretability, for the fact that it does not require
unwarranted data assumptions, and because it has
easily obtained confidence intervals (Cls; Altman,
1999; Sackett et al., 1997). The prestigious
Cochrane Collaboration (2006) promoted risk
difference as a summary of treatment efficacy for
evidence-based medicine, and has helped initiate
its counterpart for educational research, the
Campbell Collaboration (Petrosino, Boruch,
Rounding, McDonald, & Chalmers, 2000; Wolf,
2000). The Campbell Collaboration has spurred
higher federal standards for funded educational
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research, including stronger designs and effect
sizes with CIs (Whitehurst, 2004).

IRD is closely related to the percent of all
nonoverlapping data (PAND; Parker, Hagan-
Burke & Vannest, 2007). Parker and colleagues
described PAND as an overlap statistic which
could be converted to the established effect size,
phi. They stated that in a balanced, symmetrical 2
X 2 table, phi could be recalculated as the differ-
ence between two proportions, and proportions
statistics used, rather than chi-square. That exten-
sion has been carried out in this article and ap-
plied to a sizeable sample, resulting in an IRD
index bearing strong correlation to PAND and
phi. Both phi and IRD are considered strong,
useful effect sizes for single-case research. Our
field test of IRD to 166 simple AB contrasts from
published single-case research studies helps an-

swer questions practitioners might have about
IRD:

1. Can IRD be reliably calculated?

2. How do IRD results relate to better known
effect sizes?

3. What effect size magnitudes are typically
found in IRD?

4. How well does IRD discriminate among sin-
gle case datasets?

METHOD

IRD is calculated as the difference between two
IRs (Cochrane Collaboration, 2006; Sackett et
al., 1997). The IR for each phase is defined as the
number of “improved data points” divided by the
total data points in that phase:
# impr.
# total

An improved data point in baseline is defined as
one that ties or exceeds any data point in the
treatment phase. An improved data point in the
treatment phase is defined as any which exceeds
all data points in the baseline phase. “Exceeds”
refers to higher levels of behaviors we wish to in-
crease (e.g., homework completion) and to lower
levels of behaviors we wish to decrease (e.g.,
tantrums). Improved data points are identified vi-
sually; IRD is calculated as the difference between
two independent proportions.

Exceptional Children

IRD is here modified from its use in group
medical designs to better suit single case designs:
The control group or condition becomes the
baseline phase(s), and the treatment group or
condition becomes the intervention phase(s). Im-
proved (or successful) versus unimproved (or un-
successful) data are defined by data overlap
between phases. In the baseline phase, unim-
proved data do not overlap (equal or exceed) any
treatment phase data, unlike improved baseline
data. In the treatment phase, unimproved data
equal or fall below one or more baseline data
points. Overlapping data (for an AB contrast) are
defined as the fewest data points that would have
to be removed (from either phase A or B) to elim-
inate all data overlap between phases.

The maximum IRD score is 100% or 1.00,
in which case all intervention phase scores exceed
all baseline scores (in an improvement direction).
IRD is calculated as the difference in these phase-
specific improvement rates: 100% (Phase B) —
0% (Phase A) = 100%. If the Ns for baseline and
intervention phases were 12 and 45, respectively,
the calculation would be 45/45 — 0/12 = 45/45 =
1.00. An IRD of 50% (.50) indicates that half of
the scores are overlapping, so did not improve
from Phase A to B. When IRD = .50, there is
only chance-level improvement from baseline to
treatment phases. A negative IRD score is possi-
ble, indicating deterioration below baseline lev-
els.

The confidence one can have in an obtained
IRD is defined by its confidence interval (CI),
which brackets the IRD. Very wide CIs indicate
that the computed IRD is not very trustworthy,
regardless of its size. Width of Cls can also be in-
terpreted as measurement precision, with narrow
ClIs showing more precision (Harper, 1999). Most
statistical packages (e.g., SPSS, SAS, NCSS, S-
Plus) provide Cls for the difference between two
proportions, under “proportion statistics” or “risk
analysis.” This study used NCSS version 2006,
which offers several CI options. Besides being in-
cluded in standard educational research statistical
packages, Cls are also available in less-known soft-
ware. StatsDirect (version 2.5.5; Buchan, 20006), a
program designed by and for medical researchers,
graphically displays risk difference results with
CIs. Specialized meta-analysis software such as
MetaWin (Rosenberg, Adams, & Gurevitch,
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FIGURE 1

Improved Verbal Responding From Using a Lag
Reinforcement Schedule With a Child With
Autism, ABAB Design
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2000) and dr-ROC (Mitchell, 2005) also calculate
risk differences with Cls. In addition, WinPEPI
software for epidemiologists (Llorca, 2002) is
freely available from a biomedical Web site
(http://www.epi-perspectives.com/ content/1/1/6),
and Ian Buchan, the author of StatsDirect (2006),
provides free interactive Web-based calculations
from the University of Manchester Medical School
(htep://www.phsim.man.ac.uk/).

FIGURE 2
Three Strategic Contrasts in the ABAB Design Study

APPLIED EXAMPLES

We applied the IRD procedure to two published
datasets, purposefully selected for their ABAB and
multiple baseline designs. We selected datasets
with visually apparent effective treatments yet
with some data overlap between phases. The ex-
amples are not intended to present model designs
or results, but rather typical published data that
could benefit from quantitative analysis. The first
example, an ABAB reversal design (Lee, McCo-
mas, & Jawor, 2002), highlights 1 participant
from a broader design entailing 3 participants.
Lee and colleagues used a lag reinforcement
schedule as an intervention to increase varied and
appropriate verbal responding by three 7-year-old
boys with autism. The baseline condition utilized
differential reinforcement without a lag schedule.
According to the Horner et al. (2005) “three
phase shifts” guideline, the ABAB design qualifies
as an experimental design. Figure 1 provides the
data count for each phase in parentheses.

The three critical contrasts in the Lee et al.
(2002) design are A, versus B;, B, versus A,, and
A, versus B,. The phase contrast that best reflects
the full design is A;A, versus B,B,. Figure 2 artifi-
cially segments the ABAB design to clarify IRD
calculations for the first three contrasts.

For each contrast we asked “What is the
smallest number of data points needing removal
from either phase to eliminate all overlap between
the two phases?” Data points may be removed
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TABLE 1

Results of Three IRD Visual Analyses of an ABAB Reversal Design

Condition Condition Condition
Baseline Treatment Baseline Treatment Baseline Treatment
Improvement Phase A, Phase B, Phase B, Phase A, Phase A, Phase B,
Improved 0 13 2 0 11
Not improved 7 3 1
Totals 7 16 4 4 12

from Phase A, Phase B, or both. Data points also
are defined as overlapping if they have the same
value across two phases; a data point “needing re-
moval” is classified as “improved” if from a base-
line phase, and as “not improved” if from a
treatment phase (see Table 1). For the A, versus
B, contrast, the smallest number needing removal
was three data points (circled in Figure 3); for the
B, versus A,, contrast, the fewest needing removal
was five; for the A, versus B, contrast, the fewest
was one. There may be more than one equally
good solution to the smallest number of data
points needing removal, so, to the extent possible,
data point removal should be balanced across the
contrasted phases.

We used Table 1’s interior and total cell val-
ues to calculate IRD. For the A, versus B, con-
trast, the improvement rate for the baseline phase
was 0/7 = 0%; for the treatment phase it was
13/16 = 81%. Their difference, the IRD, was

FIGURE 3

Data Points Needing Removal to Eliminate Overlap
Jor an A,A, Versus B;B, Contrast
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81% — 0% = 81%. For the second contrast, B,
versus A,, the improvement rates were baseline:
2/4 = 50%; treatment: 13/16 = 81%. Their IRD
was 81% — 50% = 31%. The third, A, versus B,,
contrast’s improvement rates were baseline: 0/4 =
0% and treatment: 11/12 = 92%, for an IRD of
92% — 0% = 92%.

The three IRD values (81%, 31%, 92%)
may be averaged together for a full design or om-
nibus IRD of 68%. An alternate method for an
omnibus IRD is to conduct an A A, versus BB,
contrast, by visually scanning for any Phase A
data overlapping with any Phase B data. The same
question is asked: “What is the smallest number
of data points which could be removed to elimi-
nate all overlap between the A and B phases?” Fig-
ure 3 provides a solution, summarized in Table 2.

The IR for the two baseline phases was 2/11
= 18%, and 25/28 = 89% for the treatment
phases; the IRD was 89% — 18% = 71%, not far
from the averaged 68% IRD obtained above.

An effect size alone tends to give readers a
false sense of precision. The confidence we should
have in an obtained IRD depends largely upon the
amount of data it is based on and its magnitude.
Both an IRD calculated from a small number of
data points and a small IRD warrant little confi-
dence. The precision of an IRD is indicated by the

TABLE 2

Summary of Visual Analysis of an A, A,
Versus BB, Contrast

Condition
Baseline Treatment
Improvement Phase A,A, Phase BB,
Improved 2 25
Not improved 9 3
Totals 11 28
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TABLE 3

Summary Results for Four Contrasts Conducted

With IRD
Inpus: Output:

Two IRD With
Contrast Proportions 85% CI
A, versus B, 0/7,13/3 .69<<.81>>.94
B, versus A, 13/3, 2/2 —.06<<.31>>.69
A, versus B, 0/4,11/1 .83<<.92>>1.00
A,A, versus BB, 2/9, 25/3 .53<<.71>>.91

Note. IRD = improvement rate difference; CI = confi-
dence interval.

CIs which bracket it, forming upper and lower
limits. These ClIs are provided as standard output
from a test of two proportions. Among the most
reliable Cls are those based on bootstrapping,
which sidesteps the problem of odd or asymmetri-
cal data distribution shapes. We prefer 85% or
90% ClIs for most clinical decision-making,
though 90% or 95% are preferred for publishing.

We obtained Cls for an IRD from the NCSS
“two proportions” test module. Table 3 summa-
rizes the two proportions input and CI output for
each of the four IRD values calculated thus far:
81%, 31%, 92%, 71%.

Obtaining Cls for effect sizes in single-case
research can be humbling. For these examples,
our level of certainty for clinical uses (85%)
extends .10 to .20 points or more above and
below the obtained IRD. The Cls are most opti-
mistic for the A, versus B, contrast, which yielded
the largest IRD (.92). The discouraging Cls for
the B, versus A, enclose zero, so we cannot say
with 85% certainty that for the obtained IRD of
31%, the true IRD is different from zero.

Our second example of IRD application is a
multiple baseline design by Kennedy, Cushing,
and Itkonen (1997), which measured the increase
in social contacts by students with severe disabili-
ties within general education classes. The inter-
vention was systematic social support of
individuals in the mainstreamed classrooms. One
design used was a multiple baseline across two
classrooms, Classes 2 and 6 during the school day,
offering less design strength or internal validity
than three or more baselines. Figure 4 presents
the data for one dependent measure, the number
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of peer contacts made, with numbers of data
points per phase in parentheses.

The contrasts which make most sense are A
versus B for each baseline: A, versus B, for Class
2, and A, versus B, for Class 6. Once again, for
each contrast we asked the question: “What is the
minimum number of data points to be removed
to eliminate all overlap between the contrasted
phases?” If there are two equally good solutions,
choose the one that removes a similar number of
data points from each phase. For Class 2, Figure 3
shows (in circles) a “best solution”: removing
three data points. The same number need to be
removed from the Class 6 data to eliminate all
overlap.

Table 4 presents the results of visual analysis
of data overlap. As in the first example’s dataset,
we calculated the improvement rates from the in-
formation in the table. For Class 2, the baseline
phase improvement rate was 1/8 = 13%, and the
treatment phase was 25/27 = 93%; the IRD was
93% — 13% = 80%. The test of two proportions
(1/7, 25/2) gives the 85% bootstrap CI as:
.64<<.80>>1.00. For Class 6, the baseline phase
was 1/18 = 6%; treatment phase was 15/17 =
88%; and IRD was 88% — 6% = 82%. The 85%
bootstrap CI for the two proportions (1/17, 15/2)
was: .71<<.82>>.99. Both Cls are narrow enough

FIGURE 4

Increased Social Contacts by a Student With
Severe Disabilities Over Two Environments,
Multiple Baseline Design
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TABLE 4

Results of Visual Analysis of Multiple Baseline Series Design Study

Improvement Condition Condition
(Class 2) (Class 6)
Baseline Treatment Baseline Treatment
Phase A, Phase B, Phase A, Phase B,
Improved 1 15
Not improved 17 2
Totals 8 18 17

to give us reasonable confidence in the obtained
IRD values.

We obtained an IRD for the entire design by
averaging the two individual IRD values (.80, .82)
to obtain .81 or 81%. Alternatively, the two base-
lines in Table 4 can be added together, and an om-
nibus IRD calculated, providing Cls. For the
omnibus IRD, the baseline IR was 2/26 = .08, the
treatment IR was 40/44 = 91%, and the IRD was
91% — 8% = 83%. The 85% bootstrap CI for the
two proportions (2/24, 40/4) was .75<<.83>>.93,
more precision (narrower CI width) due to the
increased number of data points. All of these cal-
culations were conducted on numbers rounded to
two decimal places for ease of replication, which
could cause results here to differ from exact re-
sults by .01 to .02.

IRD FIELD APPLICATION

Because IRD is new to single-case research, we
applied it to 166 A-versus-B contrasts from pub-
lished data series (list of articles available upon re-
quest). We conducted only simple A-versus-B
contrasts to permit comparability among the sam-
ple datasets and replicability by other researchers.

The field test included a check of the inter-
rater reliability of the visual judgments required
by the IRD procedure. In addition, we compared
IRD with the better known parametric Pearson
R? and the rank-based Kruskal-Wallis test (with
its effect size, W), as well as Scruggs et al.’s (1987)
PND. We also examined the distribution of IRD
scores to identify typical values for published sin-
gle-case research studies.

We obtained datasets by digitizing published
graphs from ERIC and PsychLIT literature
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searches. We used multiple search terms to obtain
single case design articles published over the past
25 years. This search generated a convenience
sample, including several design types. We digi-
tized all graphs with easily distinguishable indi-
vidual data points using I-Extractor software
version 1.0 (Linden Software Ltd, 1998). We in-
cluded in this study only initial A-versus-B con-
trasts from the scanned datasets. The literature
search and digitizing procedure are described in
greater detail in previous articles (Parker &
Brossart, 2003; Parker et al. 2005).

From 67 published articles, we obtained 166
initial A-versus-B contrasts. The average AB series
contained 19 data points, 8 in baseline phase and
9 in intervention phase. The interquartile range
(middle 50% of the series) was 14 to 24 data
points, and the middle 90% ranged 10 to 30 data
points. We analyzed the 166 contrasts by IRD, as
well as by Pearson’s R2, the nonparametric
Kruskal-Wallis W, and the Scruggs et al. (1987)
PND.

RESULTS

RATER RELIABILITY

We trained two graduate students in educational
psychology/special education in the IRD proce-
dure, who then applied it to the 166 datasets. The
two sets of scores correlated R = .96 with one an-
other. Seventy-two percent of the ratings were
identical between the two raters. Differences
above IRD = .10 were found in only 13% of the
ratings. This was the first actempt by the raters to
apply IRD to published data.
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TABLE 5

Intercorrelations Among IRD, R%, Kruskal Wallis W,
and PND, Based on 166 Published AB Contrasts

IRD R? KWW
R2 .856
Kruskal-Wallis W .861 920
PND .826 746 748

Note. IRD = improvement rate difference; K-W W =
Kruskal-Wallis W; PND = percent of nonoverlapping
data.

INTERCORRELATIONS

Any new measure such as IRD should be vali-
dated by existing measures with a history of use in
the field. The three comparison measures em-
ployed here include the one with most statistical
power (Pearson’s R2), the most powerful nonpara-
metric technique available (Kruskal-Wallis W),
and the most-used single-case research measure
(PND). Table 5 presents intercorrelations among
the four measures.

IRD showed high-moderate correlation (.86)
with the established effect sizes R? and Kruskal-
Wallis W, indicating validation support. IRD also
was substantially related (.83) to the established
overlap index, PND (Scruggs et al., 1987).
Among the three external criteria (R?, W, and
PND), the first two were closely related (.92),
though the first is based on explained variance
and the second on rank order. The third external
measure, PND, was moderately related (.75) to
the other two.

DISCRIMINABILITY

A comparison between two or more uniform
probability distributions can reveal their relative
strengths and weaknesses at discriminating among
single-case research contrasts with a variety of ef-
fect sizes (Cleveland, 1985). A superior effect size
will not exhibit ceiling (plateau) or floor effects, or
clumping along its probability plot. Nor will it
show large gaps (which tend to accompany clump-
ing; Chambers, Cleveland, Kleiner & Tukey,
1983; Hintze, 2007). Any of these aberrations re-
flect lack of disciminability by the effect size index.

Figure 5 depicts the uniform probability dis-

tribution for IRD and three comparison effect

144

sizes: PND, Kruskal-Wallis W (square root of),
and Pearson R, based on application to 166 AB
contrasts from published datasets. Table 6 elabo-
rates this figure by giving effect size values at 10th,
25th, 50th, 75th, and 90th percentiles. Figure 5 il-
lustrates the superiority of Pearson R (clear circle)
and Kruskal Wallis W (solid circle). Both represent
near-diagonal lines, and neither shows clumping
or gaps or plateauing. Pearson R tops out around
.99, and Kruskal-Wallis at values of approximately
.85. This fact is important for score interpretation,
but is not a deficiency in discriminating among
studies. Pearson R shows no floor effects, but
Kruskal-Wallis shows a little clumping for lowest
scores, a small deficiency. The next best distribu-
tion is IRD, which ranges from about .10 to 1.0.
IRD shows no floor effects, but does show a ceil-
ing effect; it clumps the top 15% of scores to-
gether at 1.0, unable to discriminate among them.
Least satisfactory is PND, which shows both ceil-
ing and floor effects, clumping the bottom 17% of
results together for PND = 0.

Both IRD and PND identified 29 of the 166
datasets as having no data overlap. However,
PND identified 28 additional datasets as having
completely overlapping data (PND = 0). In con-
trast, IRD assigned those 28 datasets IRD values
ranging from .17 to .77. Pearson R values for
those same 28 datasets averaged .38 (range, .04 to
.91), more in line with IRD. IRD, Pearson R and
Kruskal-Wallis W were able to detect small-to-
large effects in several of the datasets identified as
“no effect” by PND.

Table 6 shows IRD effect sizes at key per-
centiles, beside the other indices. IRD values
tended to be about .10 larger than Pearson R and
Kruskal-Wallis W (square root of). The median
IRD value for the 166 analyses was .72, with the
interquartile range .48 to .90. IRD was .10 larger
than Pearson R at 90th, 75th, 50th, and 25th per-
centiles. At the 10th percentile, the difference
widens to .17 points.

Reflecting on our example datasets, the Lee
et al. (2002) omnibus IRD (for ABAB) of .71
places it at the 50th percentile in Table 5. Lee et
al’s results therefore appear typical of those found
in published single case articles. The Kennedy et
al. (1997) multiple baseline omnibus IRD of .83
places it somewhat larger than average—between

the 50th and 75th percentiles for the published
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FIGURE 5

Uniform Probability Distributions for IRD, PND, Kruskal-Wallis W (Square Root of), and Pearson R,

Based on 166 AB Contrasts
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studies sampled. In making these comparisons
with the sample of 166, we refer only to the mag-
nitude of performance change, not to the strength
of the intervention. The extent to which the in-
tervention accounted for client improvements is a
matter of research design, not effect size.

TABLE 6

DISCUSSION

This article describes a new effect size for single-
case research data, IRD, which can be flexibly ap-
plied to designs of several phases and series,
including multiple baseline designs. IRD, under
the name of “risk analysis,” has been successfully

Score Distributions of Seven Effect Size Measures for Single-Case Research, Based on Analyses of 166

Published AB Contrasts

Percentile
10th 25th 501th 75th 90th
R Equivalent:
IRD .368 479 718 .898 999
Pearson R .200 375 .626 795 .888
Sqre K-W W 173 .365 .607 755 .823
PND .000 276 .675 918 999
R? Equivalent:
IRD? 135 229 515 .806 999
Pearson R? .040 .140 .392 .632 .789
K-W W .030 .133 .368 .570 .677

Note. IRD = improvement rate difference; Sqrt K-W W = square root of Kruskal-Wallis W; PND = percent of

nonoverlapping data; K-W W = Kruskal-Wallis .
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applied in hundreds of evidence-based medicine
group design studies, and is promoted by the in-
ternational Cochrane Collaborative, and its coun-
terpart in education, the Campbell Collaborative.
However, single-case researchers have not yet em-
braced the robust effect size measures commonly
used in the biosciences. Six advantages of IRD are
that it (a) is easily calculated by hand; (b) comple-
ments single-case research visual analysis; (c) is
easily interpreted and explained to lay consumers;
(d) has already been established in a respected
field; (e) does not require unwarranted data as-
sumptions, as do parametric and even rank order
techniques (e.g., Kruskal-Wallis); and (f) has read-
ily obtained confidence intervals. However, more
information is required of a new effect size index.

We field-tested IRD with 166 published AB
contrasts to answer four additional questions: (a)
Can IRD be reliably calculated? (b) How do IRD
results relate to better known effect sizes? (c) How
well does IRD discriminate among single case
datasets? and (d) What IRD effect size magni-
tudes are typically found? The question of reliable
calculation was answered affirmatively by two
novice scorers, whose IRD scores on 166 datasets
agreed at R = .96, with 72% identical scores. This
was impressive considering the fact that calcula-
tions were done from visual analysis of graphs,
some dense with data points. Exact agreement in-
creased to nearly 100% by having each rater
recheck the disagreement graphs. The visual anal-
ysis step of IRD could be replaced by scrutiny of
the data entered into a spreadsheet. For the most
dense graphs, scrutinizing a spreadsheet was
quicker, but for graphs with fewer data points, it
was not. Efficiency of the novice scorers increased
markedly quickly. After the first approximately
dozen graphs, time was reduced to less than 1
min per graph. Visual analysis, with the assistance
of a transparent rule, appears to be sufficiently ac-
curate and efficient for most datasets.

Single-case researchers have nor yer
embraced the robust effect size measures

commonly used in the biosciences.

The second research question was about how
IRD results related to better known effect sizes.
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IRD correlated .86 with the B2 and Kruskal-Wal-
lis W effect sizes, and .83 with the most used
index, PND. IRD correlations with 2 and W
were over 10 points higher than those achieved by
PND. This high-moderate size relationship with
the strongest parametric and nonparametric effect
sizes lends considerable support to IRD as a new
index.

We addressed the third research question, re-
lated to IRD’s discriminability (its ability to differ-
entiate among individual datasets in a reasonably
large, typical sample) by uniform probability dis-
tributions. IRD showed worse discriminability
than R? and W, but better than PND. IRD
showed no floor effects, and discriminated well
among the datasets except for the 15% with the
largest effect sizes—those with no data overlap be-
tween contrasted phases. Those largest effect sizes
were all calculated as 1.0 by IRD. These results
describe an index sufficiently sensitive for practi-
cal use only with designs which show small,
medium, and medium-large results.

The final research question was about what
IRD effect size magnitudes are typically found.
For most of the 166 analyses, IRD values were
about .10 larger than Pearson R and the square
root of Kruskal-Wallis W. To many readers, the
median IRD value of .72 will seem high com-
pared to a median R of .63 (R? of .39). However,
there are dozens of bona fide effect sizes, and their
magnitudes can vary considerably for any given
analysis (Cohen, 1988; Parker et al. 2005). Inter-
estingly, some influential statisticians advocate
moving from Pearson’s R? to R as a more inter-
pretable effect size, and one whose magnitude
better reflects amount of change (Rosenthal et al.,
2000). The IRD range of values was close enough
to other index values, that an adjustment of inter-
pretation to the new range should not be difficult.

Comparing IRD with PND highlighted
some distribution differences and similarities.
IRD (along with R2 and W) was able to detect ef-
fects (some large) from the AB contrasts PND
identified as “no effect.” For effect sizes at the
10th percentile, the average PND value was zero,
but the average IRD was .37. However, both IRD
and PND showed a ceiling effect deficiency,
which will exist with any overlap-based index.
When there is complete separation of data points
between phases, both IRD and PND award the
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highest effect size (1.0). Thus, IRD (and PND)
should not be used to compare or differentiate
studies with large effect sizes.

The two example datasets in the Method sec-
tion demonstrated a benefit of using IRD with
more complex designs: effects from two or more
simple phase contrasts can be added together for
an omnibus contrast. That is not the case with
parametric analyses (R, R2), where to achieve the
same end, variance among noncontrasted phases
must be partialed out (Parker & Brossart, 2000).
IRD also lends itself to presenting results of mul-
tiple phase contrasts together, as in a meta-analy-
sis. In the field of evidence-based medicine, such
meta-analytic type displays often feature IRD,
termed “risk difference” in medicine. Specialized
software such as MetaWin (Rosenberg et al.,
2000) and the Cochrane Collaboration’s free
RevMan (2003) calculate IRD effect sizes and
graphically display them from all studies together,
in a forest plot (Bijnens, Collette, Ivanov, Hoctin
Boes, & Sylvester, 1996). The forest plot shows
the results of component studies in a meta-analy-
sis through a visual representation that includes a
confidence interval and pooled point estimate to
demonstrate significance. The forest plot permits
readers, at a glance, to visually analyze 20, 30, or
more IRDs—their sizes and reliabilities (via confi-
dence intervals). Forest plots, first used in 1982,
are now common in the biosciences, notably in
evidence-based medical research (Lewis & Clarke,
2001). There is no reason why such effect size
presentation formats cannot also serve single-case
research designs.

The detailed IRD demonstration in the
Method section shows its flexibility. We calculated
IRD for each individual A-versus-B phase shift as
well as for all baseline versus all intervention
phases together (an omnibus test), and illustrated
IRD with a single ABAB series and with a multi-
ple baseline design. IRD can be used to help judge
performance change over a series of three or more
AB contrasts, supporting guidelines of visual anal-
ysis. The IRD procedure relies on visual analysis
and hand calculations, with the optional use of
statistical software to obtain Cls. Software for cal-
culating IRD and its CI is readily available, in-
cluding free Internet downloads and a Web-based
interactive application. The Cls indicating level of
certainty and precision in the obtained IRD may
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be disappointingly large when calculated for
shorter datasets and for smaller IRD values. How-
ever, they indicate realistic limitations of short
data series with weaker single-case research results.

Ma (2006) recently presented another over-
lap-based index, the percentage of data points ex-
ceeding the median (PEM). In a comparison
between PEM and IRD (Parker & Hagan-Burke,
2007), the latter index surpassed PEM in crite-
rion-related validity, including visual analysis rat-
ings about the magnitude of behavior change.
Correlations between IRD and visual judgments
ranged from .71 to .82 over multiple raters. These
are larger than those typically achieved for visual
judgments of single-case research (Harbst et al.,
1991; Ottenbacher, 1990; Park et al., 1990).

It was beyond the scope of this first IRD
study to establish benchmarks for small, medium,
and large effects, such as Cohen has done for R2 in
large-/V social science research. However, we have
calculated IRD on several datasets for which visual
analysis ratings were also available. From compar-
ing visual ratings with IRD, we can estimate tenta-
tive benchmarks. Very small and questionable
effects scored about .50 and below. Moderate-size
effects had IRD scores of around .50 to .70. Ef-
fects rated as large and very large generally re-
ceived IRD scores of .70 or .75 and higher.

A limitation of the present study was that we
conducted only AB contrasts in the 166 field test
contrasts, although similar results are expected for
more complex contrasts, as demonstrated in the
example data. A caution with IRD is that, like
any effect size measure, it does not causally link
the intervention and client improvement.
Scrutiny of the design is required to make such a
causal inference. A second caution relates to posi-
tive baseline trend. When Phase A trend is promi-
nent, a calculated effect size cannot fairly
represent treatment effectiveness. In those cases,
parametric (Allison & Gorman, 1993) or non-
parametric (White & Haring, 1980) techniques
can control the baseline trend. After applying a
trend-compensating formula, IRD can safely be
used without modification.

This initial study of IRD (renamed and
adapted from the “risk difference” used in medical
research) is encouraging. It is a simple, low-effort,
low-technology approach very compatible with
visual analysis. It has strong interscorer reliability.
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It correlated well with the most prestigious para-
metric and nonparametric effect sizes, and meets
APA publication standards of providing confi-
dence intervals. It showed better sensitivity than
PND, and was more strongly validated by exter-
nal measures. This is its first field test, so it needs
to be tested further by other researchers with
other datasets. However, the present field test
with 166 phase contrasts is one of the largest pub-
lished to date in the field of single-case research.
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